Competition between Al2O3 atomic layer etching and AlF3 atomic layer deposition using sequential exposures of trimethylaluminum and hydrogen fluoride.

نویسندگان

  • Jaime W DuMont
  • Steven M George
چکیده

The thermal atomic layer etching (ALE) of Al2O3 can be performed using sequential and self-limiting reactions with trimethylaluminum (TMA) and hydrogen fluoride (HF) as the reactants. The atomic layer deposition (ALD) of AlF3 can also be accomplished using the same reactants. This paper examined the competition between Al2O3 ALE and AlF3 ALD using in situ Fourier transform infrared (FTIR) vibrational spectroscopy measurements on Al2O3 ALD-coated SiO2 nanoparticles. The FTIR spectra could observe an absorbance loss of the Al-O stretching vibrations during Al2O3 ALE or an absorbance gain of the Al-F stretching vibrations during AlF3 ALD. The transition from AlF3 ALD to Al2O3 ALE occurred versus reaction temperature and was also influenced by the N2 or He background gas pressure. Higher temperatures and lower background gas pressures led to Al2O3 ALE. Lower temperatures and higher background gas pressures led to AlF3 ALD. The FTIR measurements also monitored AlCH3* and HF* species on the surface after the TMA and HF reactant exposures. The loss of AlCH3* and HF* species at higher temperatures is believed to play a vital role in the transition between AlF3 ALD at lower temperatures and Al2O3 ALE at higher temperatures. The change between AlF3 ALD and Al2O3 ALE was defined by the transition temperature. Higher transition temperatures were observed using larger N2 or He background gas pressures. This correlation was associated with variations in the N2 or He gas thermal conductivity versus pressure. The fluorination reaction during Al2O3 ALE is very exothermic and leads to temperature rises in the SiO2 nanoparticles. These temperature transients influence the Al2O3 etching. The higher N2 and He gas thermal conductivities are able to cool the SiO2 nanoparticles more efficiently and minimize the size of the temperature rises. The competition between Al2O3 ALE and AlF3 ALD using TMA and HF illustrates the interplay between etching and growth and the importance of substrate temperature. Background gas pressure also plays a key role in determining the transition temperature for nanoparticle substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone

We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we ob...

متن کامل

Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3

Related Articles Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface J. Appl. Phys. 111, 093713 (2012) Magnetic properties of ZnO nanoclusters J. Appl. Phys. 111, 084321 (2012) Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding Appl. Phys. Lett. 100, 163120 (2012) N...

متن کامل

Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition

Atomic layer deposition (ALD) of Al2O3 using trimethylaluminum (TMA) and water on Pd nanoparticles (NPs) was studied by combining in situ quartz crystal microbalance (QCM) measurements, in situ quadrupole mass spectrometry (QMS), and transmission electron microscopy (TEM) with density functional theory (DFT) calculations. TEM images of the ALD Al2O3 overcoated Pd showed conformal Al2O3 films on...

متن کامل

Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 ...

متن کامل

Epitaxial graphene surface preparation for atomic layer deposition of Al2O3

Atomic layer deposition was employed to deposit relatively thick ( 30 nm) aluminum oxide (Al2O3) using trimethylaluminum and triply-distilled H2O precursors onto epitaxial graphene grown on the Si-face of silicon carbide. Ex situ surface conditioning by a simple wet chemistry treatment was used to render the otherwise chemically inert graphene surface more amenable to dielectric deposition. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 146 5  شماره 

صفحات  -

تاریخ انتشار 2017